Comparison of resiliency on content management software
systems

Aleksi Suomalainen, CTO, Necunos Ltd.

<+

1 INTRODUCTION

Current content management platforms suffer from multiple issues re-
garding data integrity and content consistency. Necunos has made a
novel solution to make content issuance more streamlined and highly
resilient to both adversary modification and availability.

Threaths of current world are varied and dangerous. It is easy for
state or professional adversaries to prevent information flow from fac-
tual source to information consumers with a simple distributed denial
of service attack. Only trigger to engage an attack like this is money,
rest is done in an automated and destructive way through botnets.

In this paper, author shall provide data regarding our novel solution
compared to a mainstream solution which can, from this data, be de-
duced to be inferior. Our solution comprises of service made in just
static files, with a separate publishing system, without any database in
the served files. This also means that no executable code is run in the
webserver host.

Additional hosting needs are available on demand, rather than by
default unlike in many other non-resilient mainstream solutions. Costs
for hosting information can thus be dramatically reduced, rather than
applying additional server racks when traffic exceeds expectations.

2 MEASUREMENTS

Diagnostics were run against our solution and Wordpress. A high qual-
ity diagnostic tool was used for this, namely a web server load tool
wrk2. Both runs were using same parameters and were run on the
same host without any pre-existing load being on the host. Also con-
tent was exactly the same on both platforms, meaning that articles and
posts used exactly the same titles and formatting.

Command line parameters used:

wrk2 —-R2000 --latency -tl1l2 -c600 -d30s
http://127.0.0.1

With details:
-R2000: 2000 total requests per second
—latency, produce latency percentile spectrum data
-t 12, use 12 threads
-c600, keep 600 concurrent connections open
-d30s, run a 30 second test

Host CPU is Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz, main-
board X11SAE-M and 32GiB System Memory. Docker was used to
run both platforms.

Both diagnostic runs produced percentile spectrum dataplot which
was then plotted with GNUPIot to preserve maximum reproduceabil-
ity. Percentile spectrums are simple logarithmic dataplots which de-
termine where most of datapoints are within certain predetermined in-
tervals.

o Aleksi Suomalainen is working as CTO at Necunos Ltd.. E-mail:
aleksi.suomalainen@necunos.com

2.1 Wordpress

Following data was gathered from the Wordpress host run. On aver-
age, the latency was 7.89 seconds, with 4.33 second standard deviation
and maximum of 26.69 seconds. 70.89% of deviation. Requests per
second was, on average 71.92, with 28.17 requests per second stan-
dard deviation, with maximum 110 requests per second. 75.00% of
deviation.

In a 30.04 second run of diagnostic, 18157 requests were generated,
496.73MB of data was read. The HTTP server used with Wordpress
had 14818 non-2xx or 3xx responses, meaning that the server failed
to reply with a successful response code 81.61% of the test run.

Simple latency distribution:

Percentage | Latency
50.000% 7.34s
75.000% 9.74s
90.000% 14.68s
99.000% 20.25s
99.900% 23.92s
99.990% 29.64s
99.999% 29.70s
100.000% 29.70s

30000 ms

"/xlabels.dat'
‘wp.dat' using 4:1

N

25000 ms

20000 ms

15000 ms

10000 ms

5000 ms

99.99% 99.999%

Fig. 1. Wordpress load percentile spectrum

2.2 Resilient Content Management

Necunos developed Resilient Content Management platform produced
the following information. Latency was on average, 1.40 milliseconds,
with 1.13 milliseconds standard deviation and maximum of 9.76 mil-
liseconds of latency. 89.40% deviation. Requests per second were on
average, 175.54 with 227.31 standard deviation and maximum of 4550
requests per second. 98.73% deviation.

During the 30.22 seconds of diagnostic run, 59709 requests were
generated. All requests were replied to with success and 368.93MB
was read.

Simple latency distribution:

Percentage | Latency

50.000% 1.14ms
75.000% 1.54ms
90.000% 2.40ms
99.000% 6.31ms
99.900% 8.23ms
99.990% 9.47ms
99.999% 9.77ms
100.000% | 9.77ms

10 ms

"/xlabels.dat’ +
'rem.dat' using 4:1

99.99% 99.999%

Fig. 2. Resilient Content Management percentile spectrum

3 DISCUSSION

It is important to note that all requests were done on non-encrypted
connections, namely HTTP without SSL encryption. This does induce
additional penalty to performance but as can be seen, it is already slow
even without. Resilient Content Management can handle the incurred
penalty.

With the previous results, following observations must be made.
First of all, any default installation of Wordpress Docker image is un-
able to respond to unreasonable workload in time. This is quite critical
since Wordpress is widely used in context of spreading information.

Second, a three orders of magnitude decrease in latency is impor-
tant with increasing number of attacks directed towards information
providers and their services. This means that all requests for infor-
mation can be handled successfully even in a hostile denial-of-service
attack. Quick response times mean that attackers cannot manipulate
large request referrals as easily.

Third, the hosting needs of our software solution are very mini-
mal and require no proxying unless more capable hosting is required.
Databases, server side code execution and dependencies generated by
current solutions are not and will never be sustainable in the world of
information influence.

3.1 Acknowledgments

Necunos would like to thank Faktabaari for sponsoring and launching
this product on their site.

4 REFERENCES

Faktabaari, https://faktabaari.fi
Wordpress, https://wordpress.org
WRK2, https://github.com/giltene/wrk2

https://faktabaari.fi
https://wordpress.org
https://github.com/giltene/wrk2

	Introduction
	Measurements
	Wordpress
	Resilient Content Management

